
Function Follows Form: Architecture and 21st Century Software Engineering

Richard N. Taylor and Eric M. Dashofy

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425, USA
{taylor,edashofy}@ics.uci.edu

ABSTRACT

While the principles and approaches for software development cre-
ated and advocated by David Parnas and his colleagues have pro-
vided primary guidance for engineers for two decades, they are no
longer sufficient or appropriate. Products and their contexts as well
as the development processes and their contexts have changed dra-
matically. A new set of principles and approaches are needed. This
paper argues for a particular set, chief of which is the use of soft-
ware architectures as the primary concept in development. We also
argue that certain specific architectural styles be adopted as the
dominant paradigms, in particular event-based notification and, to
a somewhat lesser extent, peer-to-peer architectures. No new tech-
nologies or techniques are presented. Rather, this paper is an explo-
ration of priorities for developers, researchers, and educators.1

1. This paper is a condensed and edited version of “Moving On: Software Engineering Paradigms for the 21st Century” by Richard N.
Taylor appearing in the Proceedings of the Working Conference on Complex and Dynamic Systems Architectures, Brisbane, Australia,
December 12-14, 2001.

Abstract
While the principles and approaches for software develop-
ment created and advocated by David Parnas and his col-
leagues have provided primary guidance for engineers for
two decades, they are no longer sufficient or appropriate.
Products and their contexts as well as the development
processes and their contexts have changed dramatically. A
new set of principles and approaches are needed. This
paper argues for a particular set, chief of which is the use
of software architectures as the primary concept in devel-
opment. We also argue that certain specific architectural
styles be adopted as the dominant paradigms, in particu-
lar event-based notification and, to a somewhat lesser
extent, peer-to-peer architectures. No new technologies or
techniques are presented. Rather, this paper is an explora-
tion of priorities for developers, researchers, and educa-
tors.1

Keywords: Software development principles, software
architectures, event-based notification, peer-to-peer archi-
tectures.

1 Introduction
The 2001 International Conference on Software Engineer-
ing included a workshop devoted to the examination and
recognition of the work of David Parnas [1][2]. Undoubt-
edly, Parnas’s contributions in the areas of modularity,
abstract interfaces, program families, and information hid-
ing have, for many years, provided the basis for sound
software engineering practice as well as education. As the
world around us has changed and as new challenges for
software development have appeared; however, it is
increasingly clear that these principles and techniques,
venerable though they may be, are no longer sufficient.

Several factors exist today that were not present or rele-
vant in Parnas’ software engineering climate. Software of
the 21st century is characterized by complex, distributed
systems-of-systems composed of reused, heterogeneous
parts. Software research from the past fifteen years or so
demonstrates remarkable capabilities—or at least prom-
ise—in addressing issues related to such systems. Drawing

from those developments, this paper highlights what we
believe to be a superior set of approaches and technologies
for guiding development in the early part of the 21st cen-
tury and briefly discuss the reasons behind these choices.

2 Background: What’s Changed?
The contemporary context shows significant differences
from that encountered by Parnas in four ways: the nature
of the product is different, the context in which a product
is used is different, the process by which products are pro-
duced is different, and the context that drives the develop-
ment process is different.

Many of Parnas’ writings deal with software products that
are “critical”: command and control applications, often of
a military nature. While critical applications are still
important today, modern software products range from
tiny embedded applications dedicated solely to displaying
the temperature in a living room to games to customer
relationship management (CRM). Parnas’s products were
often created from scratch. Today, applications are seldom
created afresh, and most often must fit within a large infor-
mation systems context.

This context for applications is continually expanding and
changing. A new CRM system must work with Internet
protocols, employ standard security and encryption tech-
nology, reside atop multiple commodity desktop plat-
forms, utilize XML-based documents, incorporate legacy
databases, export selected functionality to PDAs, and not
infringe a competitor’s related patents. Writing a program
does not appear nearly as difficult as interoperating with a
complex web of other software systems.

This expanding context has created an incredibly rich
infrastructure on which to base new systems, and rich and
powerful tools and frameworks for assisting in application
development. Networking support, distributed middleware
and user interface toolkits all represent infrastructure ele-
ments that are not developed, but used. In contrast, Par-
nas’s approach to the A-7 OFP involved inventing new
technologies at each step, including nascent steps toward
creating yet another programming language.

The process by which software is developed is similarly
different. For instance, while lip service is still paid to the
“need” for abstract requirements specifications, the reality
of schedules, the frequent absence of a single, specific cus-
tomer, as well as the reality of how people design has ren-
dered specs to the “we’ll get to it sometime” category.

1. This paper is a condensed and edited version of “Moving On:
Software Engineering Paradigms for the 21st Century” by
Richard N. Taylor appearing in the Proceedings of the Working
Conference on Complex and Dynamic Systems Architectures,
Brisbane, Australia, December 12-14, 2001.

 Function Follows Form: Architecture and 21st Century Software Engineering

Richard N. Taylor and Eric M. Dashofy
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425, USA
{taylor,edashofy}@ics.uci.edu

Consequently a variety of new development processes
have emerged that either ignore requirements specs or at
least sharply downplay their role. Though decried by the
traditionalists in the academic community, these processes
reflect the need to stay in business, to establish market-
places, and to negotiate effectively with users.

One reason for such radical changes in process is the rec-
ognition that some of the qualities which Parnas (and
most software engineering textbooks) took as sacrosanct
are no longer paramount (if they ever were). Chief among
these is “correctness”. In all but the most critical of appli-
cations, the value of correctness may be sharply lower
than that of utility, or usability, or robustness, or perfor-
mance. Systems that have flaws but which work most of
the time are often far more valuable than “correct” appli-
cations that are delivered too late to satisfy a business
need. The situation now is that the critical qualities that a
systems needs to exhibit vary — across customers, devel-
opment organizations, and changing usage contexts. Con-
temporary development processes must account for such
variance.

In Parnas’ day, many software systems were developed in
the context of a well-understood (and, thus, well-speci-
fied) engineering problem. Working in the absence of a
classically bounded engineering problem is one of the key
challenges for many contemporary developers. Develop-
ment of standard requirements specifications may now be
contemporaneous with development of solution architec-
tures. Parnas, to some degree, anticipated and adopted this
position in his paper, “A Rational Design Process and
How to Fake It” [3]. Some are explored by Bashar
Nuseibeh in [5]. Adding to this, changes in the business
context of software development have occurred: an orga-
nization may only be willing to engage in a development
project if it is convinced that the solution architecture
closely enough resembles the architectures of its previous
products that an aggressive development and pricing
schedule is achievable. Alternatively, there may not even
be a specific “customer” identified, and the developers
can modify the feature list and user interface as develop-
ment proceeds, iteratively tuning the product to the needs
of the open market. In still other situations we may not be
able (or willing, or desirous) to effectively characterize
the desired system in terms of abstract qualities; rather
solution architectures provide the most effective, convinc-
ing communication vehicle between customers and devel-
opers.

3 “New” Structuring Paradigms
These issues of context, process, and priorities are clearly
critical and have numerous consequences for contempo-
rary developers. We use these concerns and perspectives
in choosing the technical solution techniques for software
design that are the focus of the remainder of this paper.

3.1 Architectures as the dominant solution

In “Designing Software for Ease of Extension and Con-

traction” Parnas introduced the notions of program fami-
lies: applications which have many modules in common,
as well as common structure. Parnas’s notions of families
were strictly focused on subset capabilities, however, and
how unwanted dependencies between modules could be
eliminated.

Software architecture research, which significantly
expands on these ideas, emerged a few years later, and has
since blossomed into what we believe should be the key
technological focus for software development in the com-
ing years.

Software architecture in this context is not referring to
vague “box and arrow” diagrams. Rather, it refers to pre-
cise notions of components, connectors, and their inter-
connection topology along with supporting tools and
techniques for creating and evolving running applications.
That is, it is not merely a technique for designing or docu-
menting a system, but rather a set of formalisms, design
approaches, and tools that are faithful to and exist along-
side real software systems. (For a description of key con-
cepts in software architectures, see [4][6][7].) Along with
the basics of software architectures, architectural styles
capture common solution approaches — often properties
of topologies — useful in a wide category of applications.
Classical notions of objects, classes, and gang-of-four pat-
terns exist at a lower level of design.

We briefly list here seven characteristics of software
architecture that argue for its primacy in modern develop-
ment.

First, software architecture represents a level of abstrac-
tion significantly higher than source code, simultaneously
effective for reasoning about application structure as well
as mapping to large-grain customer issues.

Second, architectural styles and domain-specific software
architectures are effective conveyors of knowledge about
an application domain, and can thus serve as definers of
market spaces and niches [10].

Third, the level of abstraction represented by software
architectures is appropriate for reasoning about the rela-
tionship between software structure and complex inter-
organizational relationships.

Fourth, architectures appear to be the effective level for
addressing reuse issues, including the incorporation of
black-box components.

Fifth, architectures can provide an effective technical
basis for supporting application dynamism—that is,
evolving or adapting a running application on-the-fly via
modifications to the architecture.

Sixth, architectures represent an effective level of abstrac-
tion for dealing with heterogeneity and distribution. As
such they represent the level of abstraction appropriate for
deciding issues related to middleware and various infra-
structural issues.

Seventh, architectures provide an effective basis for sup-
porting configuration management and software deploy-

ment concerns, relating those issues to software
structure [8][9].

3.2 Key Architectural Styles

While architectural concepts represent the essential, cen-
tral focus for development, two specific architectural
notions are so significant that they deserve attention as
possible dominant paradigms for the coming years. First
of these is event-based integration, an architectural style
that supports loosely-coupled, distributed and dynamic
architectures. Second are peer-to-peer architectures,
which show great promise for building robust, flexible
applications in emerging domains.

3.2.1 Event-based Notification

Event-based notification is an enabling technology for
loosely-coupled, highly dynamic, distributed systems. It is
also a critical enabler for creating opportunistic and reac-
tive applications—systems which listen for changes in the
changing world around them and act in response. The core
ideas of event-based notification, or EBN, were recog-
nized twenty or more years ago in the research commu-
nity, but have been only recently extended and sharpened
to make EBN an essential element of emerging Internet
applications [12]. Often called “publish-subscribe,” in its
most simple form, a software component is notified when-
ever some particular “event” occurs. The recipient of the
notification may choose to take some action in response
or perhaps to ignore it; the EBN concept does not require
any consequence to receipt.

Given the simplicity of the idea and its generality, it is no
wonder that the concept has seen wide use and that many
applications could legitimately claim to be using it in
some way. The recent technical advances in EBN have
come in creating general and scalable mechanisms that
allow this simple concept to be employed in very sophisti-
cated and powerful ways.

EBN’s loose coupling of components mitigates some of
the incidental aspects of software construction, such as
technological domain boundaries: programming lan-
guages, hardware platforms, and operating systems pro-
cesses. This loose coupling can help to surmount non-
technological boundaries, for instance, boundaries in
organizational structure. While agreement on APIs can
help integration across these divides, they can be very
fragile. Continual re-negotiation of interfaces is costly and
time-consuming. EBN, with reduced requirements on
consensus, can lessen the difficulties.

Loose coupling, as enabled by EBN, is a key facet of sup-
porting architectural dynamism—that is, changes to a
(distributed) software architecture that occur while it is
running. We believe that highly adaptable software sys-
tems that can reconfigure themselves dynamically in reac-
tion to internal or external events will become
increasingly important in the near future, and that EBN
architectures will play an important role in the develop-
ment of such systems.

Event-based notification can also enable highly distrib-
uted, opportunistic, reactive systems. EBN-based archi-
tectures are inherently reactive; events proceed from the
place of their occurrence to many “interested parties”
which initiate action based upon the event. Reactive sys-
tems are often designed based on some a priori knowl-
edge of what type of events are of interest and what
specific action(s) to trigger in response to receipt of a rele-
vant event. However, designers of information systems
may not be able to predict in advance all the kinds of
information—represented by event notifications—they
may be able to utilize. New information sources may
emerge, providing new event content. Opportunistic EBN
systems proceed a significant step further, searching for
and subscribing to classes of information from new
sources.

The flip side of opportunistic integration is becoming
information infrastructure for others. That is, other appli-
cations may be able to opportunistically take advantage of
information you possess. EBN systems provide the way
for you to publish your information without necessarily
knowing in advance the ways or the systems that might
utilize the information.

3.2.2 Peer-to-peer (p2p) architectures

Just as event-based notification represents a particular and
valuable style of software architecture, so too does peer-
to-peer. The essence of p2p architectures is that peers are
independent agents capable of performing useful work
entirely on their own, and which may derive additional
abilities through cooperation with other peers. The distin-
guishing feature of such applications is that a participant
in a peer-to-peer (p2p) network obtains or provides infor-
mation to other peers directly, without the use of a central
or administrative intermediary.

The key technology that enables any peer-to-peer system
to work is the use of a defined protocol to govern the
interactions between peers. As long as all peers agree to
abide by the same protocol, the peers may be imple-
mented in different programming languages, depend on
different operating system functionality, behave with dif-
ferent performance characteristics, offer different inter-
faces to end users, and offer different “added value”
functionality to those users. This provides a measure of
loose coupling similar to that found in EBN architectures.
Notably, one of the key services provided by many p2p
protocols is event-based notification. A wide variety of
p2p systems and infrastructure are available, with more
emerging frequently.

As a design approach it thus places a primacy on intrinsic
support for distribution, heterogeneity, and mobility. In a
p2p application all the platforms involved (the peers) may
not be under a common administrative authority. Indeed,
in many popular p2p applications the administrative
authority could best be described as anarchic. Conse-
quently p2p architects must consider from the outset how
issues of trust, security, unreliability, failure, and non-
repeatability are handled. The discipline of developing

systems with these properties thus yields significant bene-
fits over the long-haul.

The benefit of addressing these issues is new opportunity.
Many p2p systems are remarkably robust. Since one peer
cannot depend on the existence of any central server, a
functioning regime can potentially be established which,
in the aggregate, is able to tolerate failure (or Byzantine
action) by other peers.

Because administration is not centralized, new opportuni-
ties exist to create systems that interact across organiza-
tional and administrative boundaries. The p2p style thus
realizes in software the type of relationships we see in
teams, whether between individual people, small work
groups, companies, or nations. This is clearly a narrower
scope than event-based integration, yet obviously it has
enormous potential applicability.

In short, as a design discipline, since p2p places a primacy
on independence, decentralization, and adaptability, it
nicely maps to many contemporary application situations
and thus provides a key structuring approach. Technology
for supporting p2p applications can be found, e.g., in the
Magi software [11] and in the Cougaar project [14].

4 Conclusion
Despite the discussion in many software engineering text-
books and at conferences, Parnas’ many contributions are
no longer sufficient to address the issues encountered in
building modern software systems. Proofs of correctness
are not the ultimate goal of software engineering. In
today’s world, products, processes, and their contexts
have changed dramatically such that a new set of princi-
ples and approaches need to be identified as the leading,
primary concepts. We have argued that chief among these
concepts is the use of software architectures as the pri-
mary concept in development; that requirements be rele-
gated to a much lesser role in the process, and that certain
specific architectural styles be adopted as dominant para-
digms. Chief among these styles are event-based notifica-
tion and peer-to-peer architectures. While it appears that
much of the software engineering field is now focusing on
measuring the effects of traditional practices and tooling
support for quality assurance techniques, it seems like
gearing up to fight a previous war. In contrast, we should
be aggressively fleshing out these new(er) approaches and
educating today’s students in more forward-looking tech-
nologies.

5 Acknowledgments
The authors are particularly indebted to Ken Anderson.

Effort sponsored by the Defense Advanced Research
Projects Agency, and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement num-
bers F30602-94-C-0195, F30602-97-2-0021, and F30602-
99-C-0174. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Air Force Research Laboratory or the
U.S. Government.

6 References

[1] Proceedings of the 2001 International Conference on
Software Engineering, Toronto, Ontario, Canada. May
2001. IEEE Computer Society Press.

[2] Software Fundamentals: Collected Papers by David
L. Parnas. Edited by Daniel M. Hoffman and David
M. Weiss. Addison-Wesley, 2001.

[3] Parnas, D.L.and Clements, P. C. 1986. A rational
design process: How and why to fake it. IEEE Trans.
Softw. Eng. SE-12, 2 (Feb.), 251--257.

[4] Perry, D. E. and A. L. Wolf (1992). “Foundations for
the Study of Software Architecture.” ACM SIGSOFT
Software Engineering Notes 17(4): 40-52.

[5] Nuseibeh, B. Weaving Together Requirements and
Architecture, IEEE Computer, 34(3):115-117, March
2001

[6] Medvidovic, N. and R. N. Taylor (2000). “A Classifi-
cation and Comparison Framework for Software
Architecture Description Languages.” IEEE Transac-
tions on Software Engineering.

[7] Kruchten, P. (1995). The 4+1 View Model of Archi-
tecture. IEEE Software. 12: 42-50.

[8] van der Hoek, A., D. M. Heimbigner, et al. (1998).
Software Architecture, Configuration Management,
and Configurable Distributed Systems: A Ménage a
Trois. Boulder, Colorado, University of Colorado at
Boulder.

[9] Hall, R. S., D. Heimbigner, et al. (1999). A Coopera-
tive Approach to Support Software Deployment Using
the Software Dock. 1999 International Conference on
Software Engineering, Los Angeles, CA, IEEE Com-
puter Society.

[10] Fielding, R. (2000). Architectural Styles and the
Design of Network-based Software Architectures
(Ph.D. Dissertation). Information and Computer Sci-
ence. Irvine, CA, University of California, Irvine.

[11] http://www.endeavors.com/

[12] Taylor, R. An Introduction to Event-Based Notifica-
tion and Event-Based Integration: A KnowNow
Whitepaper, June 2001. http://www.knownow.com/
products/whitepapers/ebi_whitepaper.pdf

[13] The Workshop on Internet-scale Software Technolo-
gies: Internet-scale Namespaces. August 19-20, 1999
University of California, Irvine.
http://www.ics.uci.edu/IRUS/twist/twist99/

[14] http://www.cougaar.org/

